Skip to content

๐Ÿงฌ DSL Knowledge Index

Purpose and Scope


๐ŸŽฏ What Is a DSL in ConnectSoft?

In the context of the ConnectSoft AI Software Factory, a Domain-Specific Language (DSL) is a structured, declarative representation that defines:

  • The expected format, constraints, and relationships of generated artifacts
  • The intent behind blueprints, spans, test cases, telemetry, UI components, etc.
  • A language-level contract used by agents to:

  • Generate reusable code

  • Validate output
  • Drive prompt injection
  • Enforce consistency across domains and tenants

๐Ÿ“š Examples of DSLs

DSL Name Domain Purpose
dsl-actor-handler Backend Defines a message-based actor that processes a command and emits a response
dsl-feature-flow Orchestration Describes the flow of steps for a specific business scenario
dsl-telemetry-span Observability Defines telemetry span structure for tracing a user or system action
dsl-ai-skill-call AI Kernel Declares inputs and outputs of a skill or planner action
dsl-ui-form-section Frontend Declaratively specifies UI input fields, validation, and layout
dsl-specflow-scenario Testing Represents a BDD scenario outline for use in SpecFlow or Gherkin

๐ŸŽฏ Purpose of the DSL Knowledge Index

The DSL Knowledge Index is a first-class knowledge document that:

  • ๐Ÿ“ฆ Stores all DSL definitions, metadata, tags, and versions
  • ๐Ÿ“š Enables semantic search and similarity-based retrieval
  • ๐Ÿ”— Powers prompt enrichment by injecting DSL examples and schemas
  • ๐Ÿง  Drives agent decision-making based on DSL availability and compatibility
  • ๐Ÿ”„ Supports regeneration, validation, and evolution of code artifacts
  • ๐Ÿค Enables multi-agent coordination through shared DSLs

๐ŸŒ Scope of This Document

This documentation defines:

  • The structure of the DSL registry (index, graph nodes, vector memory)
  • How DSLs are linked to generated assets
  • How DSLs influence prompt construction and validation
  • Which agents use DSLs and how
  • How DSLs evolve across versions, forks, and tenants
  • How DSL coverage, reuse, and quality are measured

It is not a DSL specification guide (thatโ€™s per DSL). Instead, this document defines the knowledge and infrastructure around DSLs.


๐Ÿ”– Tags and Indexes Used

Each DSL entry will contain tags like:

  • domain:backend, layer:frontend, purpose:test, tenant:shared
  • confidence: 0.93, sourceAgent: DSLDesignerAgent, usedIn: prompt-blueprint-login

This supports advanced queries like:

List all DSLs used in authentication prompts by QA agents

Or vector lookups like:

Find DSLs similar to "async message handler with retry policy"

โœ… Summary

The DSL Knowledge Index:

  • Serves as a centralized, evolving, multi-agent registry of semantic DSL definitions
  • Powers prompt injection, artifact validation, and reuse strategies
  • Bridges template generation, code output, trace validation, and feedback loops

๐Ÿงฑ DSL Types and Domains


๐Ÿงฌ Why Categorize DSLs?

The ConnectSoft AI Software Factory must support thousands of DSL definitions across varying:

  • Engineering layers (frontend, backend, observability, test, data)
  • Functional domains (identity, messaging, payments, reporting)
  • Artifact targets (models, events, UI, tests, spans, skills)
  • Agent workflows (blueprint generation, prompt planning, validation)

To support discoverability, prompt injection, and smart reuse, each DSL is categorized by type and domain.


๐Ÿ“‚ DSL Type Taxonomy

Type Description Typical Output
Blueprint DSL Logical feature model or service spec Classes, handlers, commands
Model DSL Entities, aggregates, DTOs, records NHibernate or EF models
UI DSL Screens, form sections, UX flows Blazor/Angular components
API DSL Request/response pairs, endpoint definitions REST or gRPC controllers
Event DSL Domain events, integration events Message classes
Span DSL Observability/tracing structure OpenTelemetry span spec
Test DSL Scenarios, conditions, assertions SpecFlow, BDD, MSTest
AI Skill DSL Semantic Kernel skill definitions Planner-friendly skill structure
Prompt DSL Parameterized prompt + schema Reusable prompt patterns
Validation DSL Input validation and business rules FluentValidation or JSON Schema
Infrastructure DSL Health checks, queues, configs Bicep/YAML/Infra-as-Code templates

๐ŸŒ DSL Domain Examples

Each DSL also belongs to a functional domain, allowing:

  • Tenant/domain-scoped reuse
  • Agent filtering during generation
  • Semantic trace linking
Domain Example DSLs
authentication dsl-login-handler, dsl-auth-span, dsl-session-model
user-management dsl-user-profile, dsl-invite-user, dsl-deactivate-flow
messaging dsl-sms-event, dsl-email-template, dsl-retry-policy
notifications dsl-notify-user, dsl-alert-type, dsl-push-channel
reporting dsl-report-query, dsl-export-csv, dsl-scheduled-task
ai-agents dsl-skill-call, dsl-agent-flow, dsl-memory-embedding

DSLs can be reused across domains with explicit tags (shared, tenant-specific, agent-internal).


id: dsl-user-registration-flow
type: blueprint
domain: authentication
tags:
  - layer:backend
  - tenant:shared
  - usedIn: prompt-blueprint-user-registration
  - confidence: 0.91

๐Ÿ“Œ Key Takeaways

  • DSLs are not flat โ€” they are typed, scoped, and linked
  • This categorization powers:
    • ๐Ÿ” Better search and indexing
    • ๐Ÿค– Agent compatibility and filtering
    • ๐Ÿ”„ Prompt reuse and alignment
    • ๐Ÿง  Semantic similarity retrieval
  • DSLs span the full stack โ€” from telemetry to UI, events to validation

๐Ÿงพ DSL Structure & Metadata Model


๐Ÿงฑ What Is a DSL Structurally?

Each DSL entry in the ConnectSoft Knowledge Graph is stored as a versioned semantic unit in YAML or JSON format. It includes:

  • A schema definition for generated artifacts
  • Metadata for indexing, discovery, and memory
  • Optionally, examples, injections, and validation rules

DSLs are not just definitions โ€” they are knowledge-first building blocks.


๐Ÿ“ฆ DSL Knowledge Unit Schema

id: dsl-user-handler
version: v1.2.0
type: blueprint
domain: user-management
layer: backend
description: >
  Declares a message-based command handler for user operations.
  Emits a response DTO and triggers a domain event.
fields:
  commandName: string
  responseType: string
  emitsEvent: bool
  retryPolicy: enum[None, Linear, Exponential]
tags:
  - tenant:shared
  - usedIn: prompt-blueprint-user-registration
  - status: active
  - createdBy: DSLDesignerAgent
confidence: 0.93
examples:
  - commandName: InviteUserCommand
    responseType: InviteUserResponse
    emitsEvent: true
    retryPolicy: Exponential
validationRules:
  - rule: "commandName must end with 'Command'"
    severity: error
    appliesTo: commandName
storage:
  location: blob://dsls/dsl-user-handler-v1.2.0.yaml
  embedded: true
embedding:
  vectorId: vec-dsl-user-handler-v1.2
  tags: [blueprint, backend, handler]

๐Ÿง  Metadata Breakdown

Field Description
id Unique identifier for the DSL
type What kind of artifact the DSL defines
domain Functional context (e.g., messaging, auth)
layer Architecture layer (frontend, backend, test)
version SemVer-style version string
tags Semantic tags for indexing and filtering
confidence Quality score based on feedback and reuse
examples Canonical or tenant-specific samples
validationRules Optional static checks
storage Where the DSL file resides
embedding Vector representation metadata

๐Ÿ” Reserved Tags

To support factory-level consistency:

Tag Purpose
tenant:shared Global DSL available to all tenants
status:deprecated Obsolete and should not be used in new generation
createdBy:AgentX Attribution to source agent
linkedTo:template-user-registration Usage traceability

๐Ÿ’ก Embedding DSLs

Each DSL is also embedded into a vector store (e.g., Azure Cognitive Search or Qdrant) using the DSL body and description.

This enables:

  • Prompt injection via similarity search
  • Agent lookup: โ€œFind DSLs like thisโ€
  • Drift detection based on structure changes

๐Ÿงฌ DSL Example: UI Form Section

id: dsl-ui-form-section
type: ui
domain: user-profile
layer: frontend
fields:
  label: string
  fieldName: string
  inputType: enum[text, email, phone, date]
  required: bool
  placeholder: string
  hint: string

Used in Blazor form generators and prompt UI design flows.


โœ… Summary

Each DSL knowledge unit is:

  • ๐Ÿ“ฆ Structured as a YAML/JSON schema with metadata
  • ๐Ÿ”— Linked to tags, vectors, and generation usage
  • ๐Ÿง  Fully embeddable for memory and prompt injection
  • ๐Ÿงช Validatable with optional static rules

๐Ÿ”„ Lifecycle of a DSL


๐Ÿ“˜ Why Define a DSL Lifecycle?

DSLs in the ConnectSoft AI Software Factory are not static files โ€” they are living semantic contracts. A clear lifecycle ensures:

  • Controlled introduction of new DSLs
  • Safe evolution and deprecation
  • Versioning across agents, tenants, and generations
  • Visibility into which versions are active, stable, or outdated

A broken DSL breaks everything that uses it: prompts, templates, outputs, validation, and feedback.


๐Ÿงฌ DSL Lifecycle States

State Description Who Can Transition
Draft New DSL under design, not used in generation DSLDesignerAgent, human
Active DSL approved and ready for generation ValidatorAgent, DSLCurator
Stable Used in validated traces and production; locked for changes CoordinatorAgent, Governance layer
Deprecated Marked for removal; replaced by successor DSL DSLJanitorAgent, DSLCurator
Archived Read-only, no longer usable or referenced ArchiverAgent, Admins only

๐Ÿ” Lifecycle Transition Rules

flowchart TD
    D[Draft] --> A[Active]
    A --> S[Stable]
    A --> Dep[Deprecated]
    S --> Dep
    Dep --> Arc[Archived]
    D --> Dep
Hold "Alt" / "Option" to enable pan & zoom

Transitions require agent approval or confidence thresholds.


๐Ÿ“ฆ DSL Evolution Patterns

Pattern Use Case Result
Minor version update Add optional field v1.2.0 โ†’ v1.3.0
Major version update Breaking change to structure v1 โ†’ v2 fork
Fork for tenant Customization by tenant dsl-login-handler โ†’ dsl-login-handler-petclinic
Composition Merge multiple DSLs dsl-feature โ†’ dsl-feature + dsl-metrics
Extension Add fields via inheritance DSL uses extends tag or schema

๐Ÿ”– Metadata for Lifecycle Tracking

status: stable
version: v1.2.0
replaces: dsl-user-handler-v1.1.0
replacedBy: null
createdOn: 2025-04-30
lastUsedInTrace: trace-id-872
validatedBy: TestAgent, BlueprintAgent

Each lifecycle action is auditable via the graph changelog and DSL index logs.


๐Ÿค– Agent Roles in DSL Lifecycle

Agent Role
DSLDesignerAgent Proposes and defines new DSL
ValidatorAgent Runs conformance checks before activation
FeedbackAgent Collects votes and trace impact to evaluate readiness
CoordinatorAgent Marks DSL as stable when used successfully
DSLJanitorAgent Identifies unused or obsolete DSLs for deprecation
GovernanceOrchestrator Enforces policies on DSL ownership and lifecycle state

โœ… Summary

DSL lifecycle is structured and controlled:

  • Prevents regressions and unsafe generation
  • Encourages stability before widespread reuse
  • Enables scoped customization by tenant/project
  • Links generation, usage, and memory with traceability

๐Ÿงพ Versioning and Forking Rules


๐ŸŽฏ Why Version and Fork DSLs?

In a large-scale AI Software Factory, DSLs evolve due to:

  • New requirements
  • Breaking schema changes
  • Tenant-specific customizations
  • Feature specialization
  • Technology stack variations

To preserve trace integrity, reproducibility, and compatibility, we enforce clear rules for versioning and forking.


๐Ÿ”ข Semantic Versioning for DSLs

DSLs follow a SemVer-like scheme:

v<MAJOR>.<MINOR>.<PATCH>
Version Part Meaning Rules
MAJOR Incompatible schema change Requires deprecation or fork of prior version
MINOR Backward-compatible enhancement Existing traces remain valid
PATCH Metadata or tag fix No structural change; reindex only

DSLs with the same major version are assumed structurally compatible.


๐Ÿ” Example

dsl-user-handler-v1.1.0 โ†’ v1.2.0 โ†’ v2.0.0
  • v1.2.0: adds retry policy (optional field)
  • v2.0.0: changes field name from commandName to actionName โ†’ breaking

๐ŸŒฑ Forking DSLs

A fork is a derived DSL with intentional schema divergence for a:

  • Tenant (petclinic, ecomx, financeplus)
  • Project (connectsoft-gateway)
  • Architecture variation (e.g., actor-based vs HTTP-based)

Forks are linked via the forkedFrom and forks graph edge:

id: dsl-login-handler-petclinic
forkedFrom: dsl-login-handler
tenant: petclinic
changes:
  - renamed field `userId` โ†’ `vetId`
  - added field `clinicContextId`

Forks are treated as distinct nodes in the knowledge graph.


๐Ÿง  Versioning Rules Summary

Action Allowed? Result
Change required field โ†’ optional โœ… MINOR version bump
Add new optional field โœ… MINOR
Rename existing field โŒ Must create a new MAJOR version or fork
Remove field โŒ Fork or MAJOR required
Metadata/tag update only โœ… PATCH
Schema override by tenant โœ… Fork required

๐Ÿ”„ Graph Edges for Version and Fork Lineage

Edge Purpose
replaces โ†’ Shows upgrade path between versions
forkedFrom โ†’ Links derived DSL to original
extends โ†’ Reuse + override base DSL structure
linkedTo โ†’ Shows usage in prompts/templates/tests

All versioning and forking history is queryable and visualizable.


๐Ÿ“Š Version Coverage and Usage Metrics

Track:

  • Most used version per DSL
  • Fork divergence metrics
  • Obsolete DSLs used in old traces
  • Number of tenants sharing same DSL major version
  • Confidence trends per version

๐Ÿ› ๏ธ Automation Support

  • Agents automatically detect incompatible changes and suggest forks
  • Coordinators trigger regeneration if DSL version becomes invalid
  • Prompts adapt DSL version via vector matching or upgrade rules

โœ… Summary

Versioning and forking are core to safe DSL evolution:

  • MAJOR = break, MINOR = add, PATCH = fix
  • Forks isolate tenant-specific logic
  • Traceability ensures reproducibility and recovery
  • Agents collaborate via lineage metadata

๐ŸŒ DSL in the Knowledge Graph


๐Ÿง  Why Model DSLs in the Graph?

DSLs arenโ€™t just isolated definitions โ€” theyโ€™re semantic knowledge entities that participate in:

  • Prompt planning
  • Multi-agent collaboration
  • Memory embedding
  • Trace completeness scoring
  • Template and test generation

Representing them in the Knowledge Graph allows:

  • ๐Ÿ”— Linkage to outputs, prompts, tests, and telemetry
  • ๐Ÿง  Similarity-based lookup using vector embeddings
  • ๐Ÿงฌ Structural introspection (fields, versions, examples)
  • ๐Ÿ”„ Automated lifecycle tracking

๐Ÿ”— Graph Node Structure for DSL

Each DSL becomes a typed node in the Knowledge Graph:

type: DSL
id: dsl-user-handler-v1.2.0
title: User Handler DSL (v1.2.0)
layer: backend
domain: user-management
embeddingId: vec-dsl-user-handler-v1.2
confidence: 0.91
linkedArtifacts:
  - template-user-handler
  - span-user.handler.invoked
  - test-user-handler.feature
createdBy: DSLDesignerAgent
forkedFrom: dsl-user-handler-v1.0.0
tags: [blueprint, handler, shared]

๐Ÿ” Example DSL Graph Edges

graph LR
  DSL1[dsl-user-handler-v1.2.0]
  T1[template-user-handler]
  P1[prompt-blueprint-user-handler]
  S1[span-user.handler.invoked]
  TEST1[test-user-handler.feature]
  DSL1 -->|usedBy| T1
  DSL1 -->|usedIn| P1
  DSL1 -->|spans| S1
  DSL1 -->|validates| TEST1
Hold "Alt" / "Option" to enable pan & zoom

๐Ÿงฌ Graph Relations

Relation Meaning
usedBy โ†’ template Template generation driven by this DSL
usedIn โ†’ prompt Prompt planning enriched by this DSL
defines โ†’ span/event DSL formalizes a trace/telemetry shape
validatedBy โ†’ test Test references fields in this DSL
forkedFrom โ†’ DSL Fork lineage
replaces โ†’ DSL Version lineage
extends โ†’ DSL Inheritance across DSLs

๐Ÿ” Example Query Use Cases

  • โ€œFind all DSLs used in authentication flowsโ€
  • โ€œList prompts linked to deprecated DSLsโ€
  • โ€œWhich templates are still using v1.x of dsl-user-handler?โ€
  • โ€œShow all DSLs related to user-invite span tracesโ€
  • โ€œTrace โ†’ what DSLs, templates, and tests it depends onโ€

๐Ÿ“Š Graph Enrichment Over Time

As DSLs are used:

  • New nodes and edges are added (usedIn, linkedTo, forkedFrom)
  • Confidence scores increase or decay
  • Agents query DSLs based on vector proximity, not hard IDs
  • DSLs become routing surfaces for prompt orchestration and trace validation

๐Ÿง  Memory and Embeddings

Each DSL node also has:

Field Purpose
embeddingId Reference to vector index entry
vectorTags Domain, layer, purpose, tenant
embeddingSource DSL schema + examples + description

Agents can do queries like:

"Find a DSL similar to an event handler that emits retries"

And get a graph-matched DSL ready for prompt or code injection.


โœ… Summary

Modeling DSLs in the graph gives:

  • First-class traceability and observability
  • Smart agent planning based on actual usage
  • Rich query, fork, and impact tracking
  • Embedding-powered similarity for prompt adaptation

๐Ÿ—‚๏ธ Indexing Strategy


๐ŸŽฏ Why Index DSLs?

DSLs must be:

  • ๐Ÿ” Searchable by agents (semantic, metadata, usage context)
  • โšก๏ธ Fast to retrieve for prompt injection
  • ๐Ÿง  Embeddable into memory systems (vector search, hybrid search)
  • ๐Ÿ“ˆ Filterable by tags, layers, versions, tenants, and confidence levels

The DSL index is a high-performance semantic registry โ€” not just a flat list.


๐Ÿ—‚๏ธ Types of Indexes

Index Type Purpose
Tag Index Fast filtering by metadata (type, domain, layer)
Vector Index Similarity-based DSL retrieval using semantic embedding
Text Index Full-text search on DSL description, examples, field names
Tenant/Project Index Partitioned retrieval scoped to tenant, workspace, or project
Usage Index Links DSLs to artifacts like prompts, templates, spans
Confidence Index Score-based prioritization and decay tracking
Lifecycle Index Status-based filtering (draft, active, deprecated)
Change Index Diff- and version-aware change history
Agent Compatibility Index DSLs usable by given agent role/type
Injection Suitability Index Determines DSLโ€™s usability for prompt injection
Span-Linked Index Shows DSLs defining telemetry shapes
Fork Lineage Index Cross-version and cross-tenant lineage browsing

๐Ÿท๏ธ Example Tag-Based Index Fields

- id: dsl-notify-user-v1.1.0
  tags:
    type: event
    domain: notifications
    layer: backend
    confidence: 0.94
    status: active
    tenant: shared
    usedIn: prompt-user-invite
    linkedTo: span.notify_user.sent
    createdBy: DSLDesignerAgent

๐Ÿ“ฆ Vector Embedding Strategy

  • Source: description, fields, examples, domain, prompt usage
  • Stored in: Azure AI Search, Qdrant, or Pinecone
  • Retrieval: topK, threshold, semantic match + tag filter

Example:

"DSL to define async retryable command in messaging layer"
โ†’ matches dsl-retryable-command-handler

๐Ÿ” Search Examples

Query Result
tag:frontend AND domain:user-profile All UI DSLs for user profile forms
similarTo: span-user.login โ†’ type:test DSLs defining test flows for login span
usedIn: prompt-notify-user DSLs linked to notification prompt
confidence < 0.6 AND status:active Weak DSLs needing review
forkedFrom: dsl-auth-handler All forks of the auth DSL
extends: dsl-feature-base Inherited DSLs for features

๐Ÿค– Agent Retrieval APIs

Agents will use DSLIndex.GetDSL(criteria) or DSLIndex.QueryByVector(text).

Retrieval Modes:

  • GetById("dsl-user-handler-v1.2.0")
  • SearchByTags({ type: "test", domain: "auth" })
  • FindSimilar("retryable backend command DSL")

๐Ÿ“Š Confidence-Weighted Ranking

When retrieving DSLs:

  • DSLs with high confidence are ranked higher
  • Confidence affected by:
    • Feedback votes
    • Successful trace completions
    • Prompt outcome quality
    • Failed generations or missing spans

โœ… Summary

The DSL indexing system supports:

  • ๐Ÿ” Fast, tag-based filtering
  • ๐Ÿง  Semantic similarity via embeddings
  • ๐Ÿค– Agent-friendly APIs for prompt planning
  • ๐Ÿ”„ Dynamic ranking based on usage and feedback
  • ๐Ÿงฌ Multi-dimensional cross-indexing (domain, layer, lifecycle, tenant)

๐Ÿ”— Linking DSLs to Templates and Prompts


DSLs are not passive metadata โ€” they are active drivers of:

  • ๐Ÿ”ง Code template configuration
  • ๐Ÿ“ค Prompt-based artifact generation
  • โœ… Output validation and trace alignment
  • ๐Ÿ”„ Cross-agent planning (between DSL designers, blueprint builders, test agents)

A prompt without DSL is generic. A prompt enriched by a DSL is domain-aware, testable, and reusable.


From Relation To Purpose
DSL usedIn Prompt Injects structure into generation
DSL linkedTo Template Guides template selection and validation
DSL defines Span/Test/Model Drives expected structure
Prompt requiresDSL DSL Prompt dependency declared explicitly
Agent usesDSL DSL Agent relies on the DSL at runtime

๐Ÿ“ฅ Prompt DSL Injection Example

Prompt Template:

promptId: blueprint-user-handler
requiresDSL: dsl-user-handler
template:
  "Generate a command handler using the following structure:
  {{dsl-user-handler | inject: fields, examples}}"

Result:

  • Prompt is dynamically updated with DSL content
  • Agent receives schema + examples for generation
  • Prompt adapts per tenant/fork/version

๐Ÿงฉ Template-Derived Generation Example

Template: template-user-handler.cs

Linked DSL: dsl-user-handler

Usage:

  • DSL fields โ†’ code snippets
  • DSL retry policy โ†’ Polly retry block
  • DSL emitsEvent โ†’ auto-generate domain event class
  • DSL used to validate generated class shape during test

๐Ÿง  Prompt Construction from DSL

Some prompts are generated on the fly from DSL using prompt blueprints:

dsl: dsl-telemetry-span
promptBlueprint:
  "You are designing a telemetry span for {{dsl.domain}}. The operation name should be: {{dsl.spanName}}.
   Include the following tags: {{dsl.tags}}.
   Ensure the span duration logic follows: {{dsl.durationLogic}}."

This allows agents like PromptPlannerAgent to generate DSL-aware prompt candidates automatically.


๐Ÿ” Query Examples

Use Case Query
Prompts using deprecated DSLs prompt.usedIn โ†’ DSL[status=deprecated]
Templates using outdated DSL versions template.linkedTo โ†’ DSL[version < v2.0.0]
All prompts powered by UI DSLs prompt.requiresDSL โ†’ DSL[type=ui]
DSLs used in prompt injection but never in template validation Cross-link inconsistency

โœ… Summary

DSLs power prompt and template generation:

  • ๐Ÿ’ฌ Prompts are semantically enriched with DSL content
  • ๐Ÿงฑ Templates are scaffolded using DSL-defined structure
  • ๐Ÿ”„ Graph tracks all usedIn, linkedTo, defines, and requiredBy relations
  • ๐Ÿง  Agent prompts adapt based on DSL context (tenant, version, fork)
  • ๐Ÿ“Š DSL usage across prompts and templates drives traceability and refactor planning

๐Ÿ” Search and Retrieval Patterns


๐Ÿ”Ž Why Searchable DSLs Matter

Agents must dynamically discover DSLs in order to:

  • Plan prompts with the most suitable DSLs
  • Reuse previously successful blueprints and examples
  • Avoid broken or deprecated versions
  • Match tenant-specific needs (e.g., forks, extensions)
  • Automatically validate trace completeness against DSL definitions

The system provides multi-modal search capabilities:

  • Textual
  • Tag-based
  • Vector semantic similarity
  • Graph-traversal queries

๐Ÿ› ๏ธ Search Modes Supported

Search Mode Purpose Example
Text search Search DSL titles, descriptions, and examples "login handler"
Tag search Filter by metadata tags type: blueprint AND domain: auth
Vector similarity Retrieve DSLs close to a textual concept "retryable async span for email"
Graph queries DSLs connected to certain prompts, spans, or tests usedIn โ†’ prompt-login-user
Field match DSLs with specific field structures or types fields[*].inputType = phone

๐Ÿง  Agent-Level Retrieval API

Agents access DSLs using the DSLSearchService with layered query strategies:

var dsl = dslSearchService.FindBestMatch(new DSLSearchQuery {
  SemanticHint = "form to collect user's birthdate",
  RequiredTags = ["type: ui", "domain: user-profile"],
  MinConfidence = 0.85,
  MustBeActive = true
});

This returns DSL definitions injected into the prompt planner or generation step.


๐Ÿ“ฆ Result Scoring and Ranking

  • Confidence-based prioritization
  • Reuse-based weighting (seen in successful traces)
  • Agent compatibility (linked to same agent family)
  • Tenant specificity (e.g., prefer fork for petclinic)
  • Semantic closeness (via embedding cosine similarity)

๐Ÿ“˜ Example: Semantic Retrieval Workflow

PromptPlannerAgent โ†’ wants to generate a UI form
DSLSearchQuery:
  - "Form section for user contact info"
  - Type: ui
  - Domain: user-profile
โ†’ Result: dsl-ui-form-section-v1.3.1
โ†’ Inject into prompt โ†’ Generate form scaffold

If tenant is ecomx, the agent may retrieve:

dsl-ui-form-section-ecomx-v1.1.0

๐Ÿ” Advanced DSL Queries (Human or Agent)

Query Interpretation
DSLs used in user-login prompt Reverse-lookup via graph edge usedIn โ†’ prompt-login-user
Forks of dsl-user-handler still active forkedFrom: dsl-user-handler AND status:active
All telemetry span DSLs with retry logic type: span AND fields[*].name = retryPolicy
Most reused DSLs in the onboarding domain Usage index + domain filter

๐Ÿง  Smart DSL Suggestions

  • Prompt planners can query for:
    • โ€œTop 3 DSLs similar to current promptโ€
    • โ€œDSLs most used with current agentโ€™s output typeโ€
    • โ€œDSLs seen in successful test traces with same tagsโ€

โœ… Summary

DSL search and retrieval is multi-layered and agent-aware:

  • ๐Ÿ”Ž Enables both precise lookup and fuzzy discovery
  • ๐Ÿง  Vector search unlocks semantic-based planning
  • ๐Ÿงฑ DSLs can be filtered, ranked, embedded, and injected at runtime
  • ๐ŸŒ Graph links power reverse-trace and lineage queries
  • ๐Ÿค– Planners, validators, and prompt builders rely on it daily

โš”๏ธ DSL Conflict Resolution & Override


๐ŸŽฏ Why Do DSL Conflicts Happen?

In a multi-tenant, agentic AI system like ConnectSoft, DSL collisions can occur due to:

  • Different teams/agents defining similar DSLs independently
  • Forks evolving in incompatible directions
  • Deprecated DSLs still referenced in old prompts
  • Multiple DSLs with similar vector embeddings
  • Prompt injection using conflicting or ambiguous DSL structures

Without conflict resolution, the factory may generate invalid, mismatched, or duplicate artifacts.


โš ๏ธ Types of DSL Conflicts

Type Description Example
Structural Conflict Same DSL ID, different field structure dsl-user-handler changed field userId โ†’ userIdentifier
Semantic Overlap Different DSLs with nearly identical meaning dsl-auth-session vs dsl-session-auth
Version Inconsistency Prompt uses DSL v1 but template expects v2 template-user-handler requires emitsEvent, missing in v1
Fork Drift Tenant fork diverges from base and breaks compatibility dsl-user-form-ecomx no longer aligns with parent
Injection Override Multiple DSLs match a prompt, both injected Causes ambiguous prompt inputs

๐Ÿ” Conflict Detection Strategies

โœ… Structural Diffing

  • Automatically compare field sets, types, constraints

โœ… Embedding Similarity Collision

  • Flag DSLs with cosine similarity > 0.9 and different IDs

โœ… Prompt Incompatibility Check

  • Detect if injected DSL violates prompt expectations

โœ… Fork Validation

  • Check if forks removed required fields from base

โœ… Feedback Score Divergence

  • High reuse DSLs with dropping confidence โ†’ investigate

๐Ÿ”„ Resolution Mechanisms

Scenario Resolution Strategy
Same ID, different structure โŒ Invalid โ€“ block and require version bump
Conflicting semantic DSLs Merge or rename with clearer scope
Fork drift Freeze fork and regenerate from parent
Prompt-version mismatch Auto-upgrade prompt or provide migration mapping
Duplicate injections PromptPlannerAgent selects highest-confidence match or defers to user prompt

๐Ÿง  Conflict Metadata Example

conflictId: cfl-dsl-user-handler-v1.1-vs-v1.2
type: structural
description: v1.2 changes field name, breaks dependent templates
detectedBy: DSLValidatorAgent
severity: high
resolution: "Mark v1.1 as deprecated, regenerate trace plan"
linkedArtifacts:
  - prompt-user-handler
  - template-user-handler

All conflicts are indexed and linked to their origin DSLs and affected artifacts.


๐Ÿค– Agent Collaboration on Conflict Resolution

Agent Role
DSLValidatorAgent Detects structural/schema incompatibilities
PromptPlannerAgent Flags prompt collisions and injection ambiguity
TraceReplayerAgent Detects DSL-version mismatch from past trace
GovernanceOrchestrator Approves major DSL changes and forks
FeedbackAgent Surfaces usage errors that may stem from DSL issues

๐Ÿงฑ Prompt Injection Protection

Prompts define DSL strictness settings:

requiresDSL:
  id: dsl-user-handler
  version: ^1.2
  enforceStrictSchema: true
  allowForks: false

If a conflicting DSL is suggested, prompt planning fails or requests resolution.


โœ… Summary

DSL conflict management is essential to maintain:

  • โœจ Generation consistency
  • ๐Ÿงช Test and span validation accuracy
  • ๐Ÿ”„ Prompt injection safety
  • ๐Ÿ“š DSL lineage clarity
  • ๐Ÿค– Multi-agent reliability

The DSL Knowledge Graph tracks and resolves conflicts through versioning, tagging, and semantic analysis.


๐Ÿ“ฆ Common DSL Examples


๐ŸŽฏ Purpose of Examples

Concrete examples:

  • Clarify the shape and structure of typical DSLs
  • Help agents understand how to generate, validate, and inject DSLs
  • Demonstrate cross-layer and cross-domain DSL usage
  • Act as reference patterns in prompt construction and regeneration flows

๐Ÿ” Example: Backend Command Handler DSL

id: dsl-user-handler
type: blueprint
domain: user-management
layer: backend
version: v1.2.0
fields:
  commandName: string
  responseType: string
  emitsEvent: bool
  retryPolicy: enum[None, Linear, Exponential]
description: Declares a command handler used to manage user actions.
examples:
  - commandName: "InviteUserCommand"
    responseType: "InviteUserResponse"
    emitsEvent: true
    retryPolicy: "Exponential"

Used by:

  • Prompt: prompt-blueprint-user-handler
  • Template: template-user-handler.cs
  • Test: test-user-handler.feature
  • Span: span.user.handler.invoked

๐Ÿงฌ Example: UI Form Section DSL

id: dsl-ui-form-section
type: ui
domain: user-profile
layer: frontend
version: v1.0.0
fields:
  label: string
  fieldName: string
  inputType: enum[text, email, phone, password]
  required: bool
  placeholder: string
description: Represents a UI input field for form section layout.
examples:
  - label: "Email Address"
    fieldName: "email"
    inputType: "email"
    required: true
    placeholder: "example@site.com"

Used in:

  • Blazor form generators
  • UI schema injection in prompts
  • Frontend spec generation for QA scenarios

๐Ÿ“Š Example: Observability Span DSL

id: dsl-span-notify-user
type: span
domain: notifications
layer: observability
version: v2.1.0
fields:
  spanName: string
  tags:
    userId: string
    channel: enum[email, sms, push]
  successCondition: string
  failureEvent: string
description: Defines a tracing span emitted when a user is notified.
examples:
  - spanName: "notify_user"
    tags:
      userId: "{{user.id}}"
      channel: "email"
    successCondition: "response.status == 200"
    failureEvent: "NotifyUserFailed"

Used to:

  • Inject OpenTelemetry specs
  • Validate trace spans
  • Generate span-metrics.json

๐Ÿงช Example: SpecFlow Test DSL

id: dsl-specflow-user-invite
type: test
domain: user-management
layer: testing
version: v1.0.0
fields:
  scenarioTitle: string
  preconditions: list[string]
  steps: list[string]
  expectedOutcome: string
description: BDD-style SpecFlow test definition for user invite flow.
examples:
  - scenarioTitle: "Invite new user with valid email"
    preconditions: ["User does not exist"]
    steps:
      - "When admin submits invite form"
      - "Then system sends invite email"
    expectedOutcome: "User receives invite"

Used by:

  • QA Engineer Agent
  • TestTemplateAgent
  • Regression trace planners

๐Ÿค– Example: AI Skill Invocation DSL

id: dsl-skill-call-user-recommender
type: ai-skill
domain: recommendation
layer: ai-kernel
version: v1.0.0
fields:
  inputUserId: string
  recommendationType: enum[course, article, video]
  responseFormat: string
description: Semantic Kernel-compatible skill invocation spec for user recommendation.
examples:
  - inputUserId: "user-123"
    recommendationType: "course"
    responseFormat: "json"

Injected into:

  • PromptPlannerAgent
  • SK Planner DSL builder
  • AI observability traces

โœ… Summary

These examples show DSLs across:

  • ๐Ÿงฑ Layers: frontend, backend, observability, testing, AI
  • ๐ŸŽฏ Domains: auth, user-management, notifications, UI, skill execution
  • ๐Ÿ”— Graph usage: templates, prompts, spans, tests
  • ๐Ÿง  Prompt enrichment and code generation integration

๐Ÿ”„ DSL-Driven Generation Flow


๐ŸŽฏ Why Use DSLs to Drive Generation?

DSLs act as structured semantic anchors that guide:

  • Prompt planning
  • Template parameterization
  • Test scenario generation
  • Event and span shaping
  • Validation across all outputs

They turn generation from "free text prompting" into a deterministic, observable, and reusable process.


๐Ÿงฉ Generation Flow Powered by DSLs

flowchart TD
  A[PromptPlannerAgent] -->|Query DSL| B[DSL Index]
  B --> C[DSL Injection]
  C --> D[Prompt Generation]
  D --> E[Template Injection]
  E --> F[Test Planner]
  F --> G[Span Generator]
  G --> H[FeedbackAgent]
  H -->|Trace score| A
Hold "Alt" / "Option" to enable pan & zoom

Each step uses the DSL to align generation outputs across agents and artifacts.


๐Ÿ“ฅ 1. DSL Retrieval

  • Agent searches DSLIndex by semantic intent, tags, or tenant context
  • Retrieves full schema, examples, usage history, vector ID
  • DSL is loaded into short-term memory for immediate planning

๐Ÿ’ฌ 2. Prompt Construction

  • Inject DSL into structured prompt template
  • Adapt fields and values using DSL structure
  • Resolve forks or extensions if tenant-specific
  • Ensure version and tag compliance

Example:

Prompt: "Create a command handler for {{dsl.commandName}}"
โ†’ DSL field: commandName = InviteUserCommand

๐Ÿงฑ 3. Template Mapping

  • Template contains markers linked to DSL fields
  • Optional blocks (e.g., retry logic) toggled by DSL flags
  • DSL โ†’ Code DSL Translator generates base classes/interfaces
  • Ensures reproducibility and compliance

๐Ÿงช 4. Test Case Generation

  • If DSL has examples, convert to test cases
  • Create BDD-style feature file or xUnit scenario
  • Mark trace expectations based on DSL constraints

Example:

Given the command is InviteUserCommand
When the command is processed
Then a domain event InviteUserIssued should be emitted

๐Ÿ“Š 5. Span & Telemetry Planning

  • DSL defines span name, tags, success conditions
  • Used to generate OpenTelemetry spans or span-metrics.json
  • Aligns with Observability Agent workflows

๐Ÿง  6. Memory Embedding & Indexing

  • DSL instance used in generation is embedded into trace memory
  • Feedback from success/failure tied back to DSL confidence score
  • DSL is linked to output artifacts for traceability

๐Ÿ“ค 7. Output Validation

  • Output artifacts (code, prompt, span, test) are validated against the originating DSL
  • ValidatorAgent checks structural conformance
  • TraceReplayerAgent ensures runtime alignment

๐Ÿ“ˆ Trace Score Contributions

DSLs influence:

  • GenerationCompletenessScore
  • TraceValidationScore
  • PromptInjectionSuccessRate
  • Template-DSL Alignment Index

Each metric contributes to the DSL's evolving confidence level.


โœ… Summary

The DSL-driven generation flow ensures:

  • ๐Ÿงฑ Structure-aware generation
  • ๐Ÿ”„ Repeatable and traceable outputs
  • ๐Ÿค– Agent interoperability
  • ๐Ÿงช Prompt + Template + Test + Trace coherence
  • ๐Ÿ“Š Feedback loops for quality improvement

๐Ÿงฌ DSL Extension and Composition


๐ŸŽฏ Why Compose and Extend DSLs?

As the platform grows, DSLs must support:

  • ๐Ÿงฑ Reuse of base structures
  • ๐Ÿ”€ Mix-and-match of DSL fragments
  • ๐Ÿงฉ Specialization per domain or layer
  • ๐Ÿงฌ Inheritance without redundancy
  • ๐Ÿง  Modular planning by AI agents

A composable DSL system reduces duplication and enables semantic layering โ€” like building blocks for generation.


๐Ÿงฉ Extension via extends

A DSL can inherit another DSL's fields and constraints:

id: dsl-user-invite-handler
extends: dsl-user-handler
fields:
  inviteTokenExpiry: int
  roleAssignment: string

In graph:

  • Edge: extends โ†’ dsl-user-handler
  • Result: full merged field schema
  • Agents are aware of both base and derived DSLs

โž• Composition via includes

DSLs can embed multiple fragments modularly:

id: dsl-composite-onboarding
includes:
  - dsl-ui-form-user
  - dsl-span-user-registration
  - dsl-test-onboarding

All included DSLs are logically merged, but not structurally inherited.

Useful for bundle planning or full-feature flows.


๐Ÿง  Example: DSL Composition Tree

graph TD
  A[dsl-composite-onboarding]
  A --> B[dsl-ui-form-user]
  A --> C[dsl-span-user-registration]
  A --> D[dsl-test-onboarding]
Hold "Alt" / "Option" to enable pan & zoom

This composite DSL is used by:

  • CoordinatorAgent to plan onboarding flow
  • BlueprintAgent to match correct artifacts
  • FeedbackAgent to trace coverage

๐ŸŒ Use Case Examples

Case Approach
Common base handler + specialized features extends: dsl-handler-base
Bundled user registration spec includes: [dsl-ui, dsl-span, dsl-test]
UI form with nested reusable sections DSL fragment composition (nested includes)
Tenant-specific override Fork โ†’ extend parent DSL with tenant fields

๐Ÿง  Extension Semantics

Rule Behavior
Extended fields are merged Available to prompt/template/planner
Conflicts are flagged Override must be explicit
Composition does not imply inheritance Included DSLs remain semantically linked
Composed DSLs can be versioned independently Each fragment version is tracked separately

๐Ÿ› ๏ธ DSL Transformer Support

Agents like DSLTransformerAgent and PromptPlannerAgent support:

  • ๐Ÿงฌ Extension resolution (flattened DSL view)
  • ๐Ÿงฉ Composition parsing for modular workflows
  • ๐Ÿงช Test matrix expansion across composed DSLs
  • ๐Ÿ”— Graph enrichment for cross-DSL traceability

๐Ÿ“˜ Composition Example (Flattened)

flattenedFields:
  - commandName
  - responseType
  - emitsEvent
  - inviteTokenExpiry
  - roleAssignment
  - spanName
  - tags.userId
  - tags.channel
  - testSteps[]

This flattened DSL is injected into prompts or templates for generation.


โœ… Summary

DSL extension and composition unlock:

  • ๐Ÿงฑ Reuse across domains and layers
  • ๐Ÿงฉ Bundled generation and planning
  • ๐Ÿ”„ Semantic graph enrichment
  • ๐Ÿค– Intelligent modularity for agents
  • ๐Ÿ“ฆ DSL-as-blueprint for complete flows

๐Ÿงญ DSL Traceability and Lineage


๐ŸŽฏ Why Trace DSL Usage?

In a factory that creates 3000+ microservices and components:

  • Every artifact should be traceable to its semantic root (DSL)
  • Lineage tracking ensures observability, reusability, and auditability
  • Enables rollback, revalidation, and compliance checks
  • Agents must reason about what generated what โ€” not just the final output

DSLs are the semantic DNA of the software factory. Their lineage builds semantic observability.


๐Ÿ“Š DSL Traceability Graph

Each DSL participates in a knowledge lineage graph:

graph TD
  DSL[dsl-user-handler-v1.2.0]
  P[prompt-user-handler]
  T[template-user-handler.cs]
  S[span-user.handler.invoked]
  TEST[test-user-handler.feature]
  TRACE[trace-run-983]

  DSL -->|usedIn| P
  DSL -->|linkedTo| T
  DSL -->|defines| S
  DSL -->|validatedBy| TEST
  P -->|produced| TRACE
  T -->|usedIn| TRACE
  TEST -->|executesIn| TRACE
Hold "Alt" / "Option" to enable pan & zoom

This forms a full traceability chain from DSL โ†’ generation โ†’ runtime traces.


๐Ÿ”— Lineage Metadata in DSL Nodes

Each DSL node has lineage metadata:

lineage:
  createdBy: DSLDesignerAgent
  usedIn:
    - prompt-user-handler
    - template-user-handler
    - span-user.handler.invoked
  produces:
    - trace-user-handler-onboarding
  replacedBy: dsl-user-handler-v2.0.0
  forkedBy:
    - dsl-user-handler-petclinic

๐Ÿง  Agent Lineage Queries

Agent Query Example Purpose
PromptPlannerAgent GetDSLTraceSources(dsl-user-handler) Inject original examples
DSLValidatorAgent TraceImpactOfDeprecatedDSL(dsl-v1.1.0) Mark downstream invalid
GovernanceAgent ListForksOfBaseDSL(dsl-user-handler) Approve/reject divergent branches
FeedbackAgent TraceConfidenceDrop(dsl-auth-span) Analyze usage failures

๐Ÿ“‚ DSL Trace Record Format

Each generation run linked to a DSL includes a record like:

traceId: trace-user-handler-202406
dslId: dsl-user-handler-v1.2.0
promptId: prompt-user-handler
templateId: template-user-handler.cs
testId: test-user-handler.feature
spanId: span-user.handler.invoked
confidenceImpact: +0.06
forkContext: null

Used to:

  • Rebuild generation history
  • Re-evaluate test coverage
  • Visualize impact across DSL versions

๐Ÿ”„ Fork and Replace Tracking

The lineage graph supports:

  • replaces โ†’: version migration
  • forkedFrom โ†’: tenant specialization
  • extends โ†’: inheritance trees
  • usedIn โ†’: artifact dependency
  • invalidates โ†’: trace deprecation upon DSL removal

๐Ÿงฌ Temporal Lineage Support

The factory supports temporal queries:

  • โ€œWhat version of DSL was active in March 2024?โ€
  • โ€œShow all generation traces from v1.1 to v1.2 transitionโ€
  • โ€œDetect regressions introduced after fork divergenceโ€

Time-aware lineage allows snapshot comparison and compliance audit.


๐Ÿ“Š Confidence & Decay from Trace Lineage

Each DSLโ€™s confidence score is dynamically updated via:

  • Trace usage frequency
  • Trace success/failure ratio
  • Number of forks/version bumps
  • Feedback signals on prompt effectiveness

This helps identify:

  • ๐ŸŸข DSLs that are healthy and reusable
  • ๐Ÿ”ด DSLs that cause regressions or conflicts

โœ… Summary

DSL traceability and lineage enables:

  • ๐Ÿ“ˆ End-to-end semantic observability
  • ๐Ÿ” Historical regeneration and debugging
  • ๐Ÿง  Agent-level context awareness
  • ๐Ÿ” Impact analysis for upgrades or forks
  • ๐Ÿค– Continuous confidence learning via trace feedback

๐Ÿท๏ธ DSL Metadata and Enrichment Fields


๐ŸŽฏ Why Metadata Matters

DSLs are not just schemas โ€” theyโ€™re semantic assets. Rich metadata allows:

  • ๐Ÿ” Advanced filtering and discovery
  • ๐Ÿ“Š Observability and lineage tracking
  • ๐Ÿค– AI-driven prioritization and planning
  • ๐Ÿง  Cross-agent reasoning (Who? What? Where? When? Why?)

Metadata fields help DSLs participate in search, scoring, injection, validation, and graph indexing.


๐Ÿ“ฆ Core Metadata Fields

Field Purpose
id Unique DSL identifier (dsl-user-handler-v1.2.0)
title Human-readable DSL name
description What the DSL represents
type Category: blueprint, span, ui, test, ai-skill, etc.
domain Business domain (auth, user-management, notifications)
layer Architecture layer (frontend, backend, observability)
version DSL semantic version
status draft, active, deprecated, replaced
createdBy Originating agent or user
tags Searchable keywords (retry, feature, email, critical)
tenant Source context: shared, petclinic, custom
confidence DSL trust score (0โ€“1.0) based on usage/feedback

๐Ÿงช Enrichment Fields

Field Purpose
examples Example values, helps generation and embedding
embeddingId Link to vector DB index entry
embeddingTags Additional semantic indexing context
linkedArtifacts Prompts, templates, spans, tests using this DSL
forkedFrom Parent DSL (for tenant-specialized forks)
replaces Previous version lineage
extends Inherited DSL ID
includes Composed DSLs (for bundling)
metrics Usage count, success ratio, trace frequency

๐Ÿง  Observability Hooks

Field Function
definesSpan Declares OpenTelemetry span structure
linkedTraceTypes List of trace types using this DSL
metricTags Tags expected in span output
spanInjectionPrompt Predefined prompt to inject span spec
failurePattern Regex or rule to detect trace failure against DSL
feedbackImpact Adjusts confidence based on success/failure events

๐Ÿง‘โ€๐ŸŽ“ Authorship and Ownership Fields

Field Meaning
authorId Original human contributor (if applicable)
agentGenerated true/false flag if generated autonomously
approvedBy Governance entity validating the DSL
teamContext DevOps or Git project/repo context
sourceRepo Where the DSL originated from (lib-dsl-models)

These fields are useful for auditing, governance, and traceback.


๐Ÿ“ฅ Prompt Injection Hints

Field Meaning
promptInjectionMode full, partial, composed, optional
injectionConstraints Must include fields, block conflicts, etc.
promptTemplateId Preferred prompt template to use with this DSL
agentAffinity Agent types this DSL is most compatible with

๐Ÿ“˜ Sample DSL Metadata Block

id: dsl-notify-user-v1.1.0
type: blueprint
domain: notifications
layer: backend
version: v1.1.0
description: Handles async notification delivery
createdBy: DSLDesignerAgent
status: active
confidence: 0.87
tags: [email, retry, feature]
tenant: shared
examples:
  - notifyType: "email"
    template: "WelcomeEmail"
embeddingId: vec-dsl-notify-user-v1.1
linkedArtifacts:
  - prompt-notify-user
  - template-notify-user
  - span.notify_user

โœ… Summary

Metadata fields power:

  • ๐Ÿ” Search and filtering
  • ๐Ÿง  Semantic embedding
  • ๐Ÿ“Š Trace analysis and feedback learning
  • ๐Ÿค– AI prompt planning and agent orchestration
  • ๐Ÿ“š Governance and auditing

The richer the DSL metadata, the smarter the system becomes.


๐Ÿ“ˆ DSL Confidence Score Model


๐ŸŽฏ Why Track DSL Confidence?

The factory needs to:

  • ๐Ÿง  Prioritize reliable DSLs during generation
  • โš ๏ธ Flag risky or decaying DSLs for review
  • ๐Ÿ”„ Learn from successful vs. failed traces
  • ๐Ÿšฆ Decide injection eligibility based on trust level

Confidence is a dynamic, learned metric that governs DSL prioritization, validation, and deprecation readiness.


๐Ÿ“Š Confidence Score Model

Each DSL has a confidence value in the range 0.0 โ€“ 1.0.

It is calculated using a weighted signal model:

Signal Type Examples Weight
โœ… Usage Successes Successful traces, valid generations, test pass rate +++
โŒ Usage Failures Broken traces, generation mismatches, user feedback ---
๐Ÿง  Feedback Events Human/AIAgent upvotes/downvotes ++ / --
โณ Inactivity Stale or unused over time โˆ’
โš ๏ธ Conflict Alerts Structural diffs, overlapping matches --
๐Ÿ”€ Fork Divergence Rapid forking from base -
๐Ÿ—๏ธ Prompt Rejections Failed injection or mismatched schemas -

๐Ÿง  Signal Sources

Signals are collected from:

  • ๐ŸŸข TraceRun Logs โ†’ span/test/result match
  • ๐Ÿ” Generation History โ†’ prompt โ†’ template โ†’ trace alignment
  • ๐Ÿ‘ค FeedbackAgent โ†’ upvote/downvote traces tied to DSL
  • ๐Ÿค– ValidatorAgent โ†’ conformance analysis
  • ๐Ÿ“‰ ConflictResolverAgent โ†’ warnings and diffs
  • ๐Ÿ“ฆ ForkTrackerAgent โ†’ mutation tracking across tenants

๐Ÿงฎ Confidence Update Cycle

Confidence scores are periodically recalculated:

  • ๐Ÿ“† Daily batch update from trace system
  • ๐Ÿ” Real-time adjustments for major success/failure events
  • ๐Ÿ”„ Decay model for stale DSLs

Decay example:

lastUsed: 2023-12-01
confidenceDropPerWeek: 0.01

๐Ÿšฅ Confidence Thresholds (Usage Policy)

Range Meaning Platform Behavior
> 0.9 Strong, validated Auto-injected and reused
0.7 โ€“ 0.9 Acceptable Available for reuse and planning
0.5 โ€“ 0.7 Risky Requires validation before reuse
< 0.5 Untrusted Blocked from injection, flagged for fix
= 0 Deprecated Marked invalid or removed

๐Ÿ› ๏ธ Example DSL Record with Confidence

id: dsl-auth-span
version: v1.2.1
confidence: 0.71
signals:
  traceSuccessRate: 92%
  testFailureRate: 5%
  promptRejection: 2
  forkCount: 3
  userVotes: +15 / -1
lastUpdated: 2025-06-01

๐Ÿง  DSL Selection with Confidence

Agents can filter with MinConfidence:

dslSearchService.FindBestMatch(new DSLSearchQuery {
  domain: "auth",
  type: "span",
  minConfidence: 0.8
});

This ensures agents prefer healthy DSLs.


๐Ÿ“Š Confidence Heatmap (Future Visualization)

A future dashboard will visualize:

  • Confidence over time (line chart)
  • DSL family comparison (fork vs. parent)
  • Signal breakdown pie chart
  • Correlation to trace coverage

โœ… Summary

DSL confidence scoring enables:

  • ๐Ÿ“ˆ Trust-based reuse
  • ๐Ÿง  Continuous learning
  • โŒ Fault propagation detection
  • ๐Ÿงช Quality-aware generation
  • โš–๏ธ Governance and review prioritization

โœ… DSL Review and Approval Workflows


๐ŸŽฏ Why a Review Workflow Is Critical

In a multi-agent system generating production-grade software:

  • DSLs encode logic, structure, and intent
  • Errors or misalignments in a DSL propagate into all generated outputs
  • Forks and tenant-specific DSLs must be curated
  • Security-sensitive or observability DSLs require human approval
  • Auditability is mandatory for compliance and traceability

DSLs are the core of semantic control โ€” their lifecycle must be governed, reviewed, and approved.


๐Ÿ” DSL Lifecycle Stages

Stage Description
draft Created but not yet validated
under-review Submitted for human/agent validation
active Approved and available for use
deprecated Marked for replacement, not recommended
replaced Superseded by a new DSL version
archived Removed from prompt injection pool

๐Ÿ› ๏ธ Review Triggers

A DSL enters review when:

  • Created manually by human (UI/CLI)
  • Generated by agent with low initial confidence
  • Forked from a shared DSL
  • Version bump introduces breaking change
  • Conflict with existing DSL detected
  • Confidence drops below threshold

๐Ÿง  Review Agents and Roles

Agent Role
DSLValidatorAgent Schema integrity, structural soundness, conformance to standards
PromptPlannerAgent Ensures the DSL injects cleanly into prompts
ConflictResolverAgent Checks for overlap, fork divergence, version drift
GovernanceAgent Enforces review policy (approvals, merges, freezes)
FeedbackAgent Surfaces usage results and human feedback during review
TraceCoverageAgent Confirms test + span + trace coverage from DSL

๐Ÿ‘ค Human Review Workflow (Optional)

Humans may review high-risk DSLs using:

  • A web UI with full metadata, confidence scores, impact analysis
  • Review checklist (schema, examples, tags, trace coverage)
  • Approval/rejection comments
  • Merge/fork resolution tools

Example:

review:
  status: pending
  assignedTo: "Platform Architect"
  checklist:
    - [x] Valid JSON/YAML
    - [x] Prompt Injection Passed
    - [ ] Span Coverage โ‰ฅ 90%
    - [ ] Conflict Check Cleared
  comments: "Please add a test example and clarify field `retryPolicy`"

๐Ÿ“ฆ Fork Handling & Merging

Scenario Action
Tenant fork matches parent Auto-approve inheritance
Fork diverges semantically Require review/merge
Fork has conflicting ID Auto-reject, request rename
Fork introduces observability changes Mandatory human review

All fork events are logged and linked to original DSL.


๐Ÿšฆ Automated Review Rules (Policy Engine)

Rules can be defined in governance policy:

reviewRules:
  - type: "span"
    domain: "auth"
    requiredConfidence: 0.85
    requireHumanApproval: true
    minTraceCoverage: 95%
  - type: "ui"
    autoApproveIf:
      confidence > 0.9
      AND examples.count โ‰ฅ 2

๐Ÿ” Review Status and History

Each DSL contains a review block:

review:
  status: approved
  approvedBy: GovernanceAgent
  approvedAt: 2025-06-03
  comments: "Reviewed for onboarding use case"

Full history is preserved for compliance and observability.


โœ… Summary

The DSL review workflow ensures:

  • ๐Ÿง  Safety and accuracy of generation flows
  • ๐Ÿงช Full trace and test coverage
  • ๐Ÿ”€ Fork and version sanity
  • ๐Ÿง‘โ€โš–๏ธ Governance and audit readiness
  • ๐Ÿ” Collaboration between agents and humans

๐ŸŒ DSL Fork Management and Multi-Tenant Specialization


๐ŸŽฏ Why Forking DSLs Is Essential

In a platform supporting many SaaS domains and tenants:

  • DSLs need to evolve per-tenant, per-feature, or per-regulation
  • Forking enables custom logic without rewriting everything
  • Preserves semantic lineage and composability
  • Supports internal marketplaces of specialized DSLs
  • Avoids cross-tenant conflict while keeping inheritance traceable

Forking creates isolated yet traceable variations, enabling true SaaS multi-tenancy.


๐ŸŒฟ Forking Semantics

When a DSL is forked:

What Happens Notes
New DSL ID is assigned Often appends tenant suffix (e.g., -ecomx, -vet)
forkedFrom metadata is set Links to source DSL
Field schema is cloned Editable independently
Confidence resets to 0.5 Needs local trace validation
Tags may include fork or tenant:<id> Helps indexing and filtering
Prompt and template links are retained But version mismatch may block injection

๐Ÿ“˜ Example: Forked DSL Metadata

id: dsl-user-handler-ecomx-v1.0.0
forkedFrom: dsl-user-handler-v1.2.0
tenant: ecomx
tags: [user, handler, ecomx, fork]
status: draft
confidence: 0.5
differences:
  - changedField: emitsEvent โ†’ false (was true)
  - addedField: segmentId
  - removedField: retryPolicy

The fork may redefine logic for specific use cases like segmentation or auditing.


๐Ÿ› ๏ธ Fork Management Lifecycle

Stage Description
forked New DSL forked from a base
edited Custom fields added, removed, or updated
validated Trace, prompt, and span integration tested
approved Ready for tenant-specific generation
mergedBack (optional) If fork represents global improvement
deprecated No longer used for tenant or use case

๐Ÿ” Fork vs. Extend

Criteria Fork Extend
Use case Structural change, independence Logical layering, reuse
Inheritance Breaks it Maintains it
Use in prompts May conflict Compatible
Agent behavior Treats as distinct lineage Treats as overlay
DSL Index Impact Indexed separately Linked hierarchically

๐Ÿง  Agent Behavior with Forks

Agent Behavior
PromptPlannerAgent Picks fork if tenant context matches
ValidatorAgent Ensures fork doesn't break downstream
ForkTrackerAgent Logs divergence, visualizes drift
GovernanceAgent May require approval for sensitive forks
ConflictResolverAgent Warns if fork overlaps another active DSL
FeedbackAgent Tracks fork usage separately for scoring

๐Ÿง  Fork-aware Prompt Injection

promptContext:
  tenant: ecomx
dslSearch:
  domain: user-management
  type: blueprint
  allowForks: true
  preferTenantForks: true

This ensures tenant-specific DSLs are prioritized over global ones.


๐Ÿ—‚๏ธ Fork Dashboard View (Planned)

Future tooling will allow:

  • ๐ŸŒฟ Fork trees by domain, tenant, type
  • ๐Ÿ” Drift diff visualization (e.g., field added/removed)
  • ๐Ÿงช Fork-specific test/trace coverage
  • ๐Ÿ“‰ Fork decay tracking (inactive forks)
  • ๐Ÿ“ค Merge-back recommendations

โœ… Summary

Fork management supports:

  • ๐ŸŒ Tenant-specific customization
  • ๐Ÿงฌ Semantic divergence without fragmentation
  • ๐Ÿ” Traceable lineage and inheritance
  • ๐Ÿง  Agent-awareness of scope and compatibility
  • ๐Ÿงช Domain-specific DSL lifecycle management

๐Ÿง  DSL Indexing and Embedding Infrastructure


๐ŸŽฏ Why Embed and Index DSLs?

To enable scalable multi-agent collaboration and real-time discovery, the DSL system must support:

  • ๐Ÿง  Semantic similarity search
  • ๐Ÿ” Tag- and domain-based filtering
  • ๐Ÿงฉ Prompt-to-DSL matching
  • ๐Ÿ”„ Fast injection and regeneration lookups

DSLs are embedded and indexed to function as semantic APIs for intelligent agents.


๐Ÿ“ฆ DSL Index Types

Each DSL is stored in one or more indexed stores, each with a different indexing strategy:

Index Type Description
DSLMetadataIndex Fast lookup by ID, tags, type, domain, status
DSLVectorIndex Vector embeddings for similarity matching
DSLForkGraph Inheritance and fork lineage relationships
DSLTraceIndex Usage history, test/trace results
DSLInjectionIndex Prompt compatibility, conflicts, history
DSLSpanMetricIndex Observability tag-to-span relationships
DSLFeedbackIndex Human and agent voting logs
DSLConfidenceModelStore Dynamic trust computation metadata
DSLTemporalIndex Time-based version and decay tracking
TenantScopedDSLIndex Isolated view per tenant for forked/overridden DSLs

๐Ÿง  Semantic Embedding Pipeline

Every DSL is embedded using the DSL Embedding Service, which performs:

  1. DSL normalization โ†’ removes ID/version/comments
  2. Field + example flattening โ†’ into structured string
  3. Prompt-style representation โ†’ e.g., "commandName: InviteUserCommand, emitsEvent: true..."
  4. Vector embedding generation โ†’ via Azure OpenAI / custom model
  5. Push to vector store โ†’ Pinecone, Qdrant, Azure AI Search, etc.

The result is stored in DSLVectorIndex.


๐Ÿง  Example Embedding Input

type: blueprint, domain: user-management
Fields:
- commandName: string
- emitsEvent: bool
Examples:
- commandName: InviteUserCommand, emitsEvent: true

Becomes an embedding vector linked to:

embeddingId: vec-dsl-user-handler-v1.2
vectorStore: AzureCognitiveSearch
semanticTags: ["invite", "user", "command", "event"]

๐Ÿ” Semantic Search Example

When an agent receives a task:

โ€œCreate a handler that invites a user via email and emits an eventโ€

It performs:

  1. Embed query โ†’ vector
  2. Search DSLVectorIndex for cosine similarity
  3. Return ranked DSL matches
  4. Filter by:
    • minConfidence
    • tenantContext
    • status != deprecated

๐Ÿ“ Tag-Indexing (MetadataIndex)

All DSLs are also searchable by:

  • type, domain, layer, tags, status, tenant, extends, forkedFrom, etc.

Used in filtering, dashboards, governance tools.

Example query:

dslIndex.FindAll(d => 
  d.domain == "auth" &&
  d.type == "span" &&
  d.status == "active" &&
  d.tags.Contains("login"));

๐Ÿ” Real-Time Index Updates

When a DSL is:

  • Created โ†’ new embedding, indexing
  • Forked โ†’ cloned metadata and index pointers
  • Updated โ†’ version re-embedded
  • Used โ†’ trace record updates signal success/failure
  • Reviewed โ†’ tags like approved, sensitive applied
  • Deprecated โ†’ removed from injection pool

All updates are propagated via event-driven triggers into the appropriate indexes.


๐Ÿ› ๏ธ Multi-Store Architecture (Pluggable)

Indexes are decoupled and can use different backends:

Index Backing Store
Metadata Azure Table / CosmosDB / PostgreSQL
Embedding Pinecone / Qdrant / Azure AI Search
Fork Graph Neo4j / GremlinDB / GraphQL
Trace Usage ElasticSearch / Redis / SQL
Confidence Store In-memory + Redis + Blob for snapshots

โœ… Summary

The DSL Indexing and Embedding Infrastructure enables:

  • ๐Ÿ”Ž Fast semantic discovery
  • ๐Ÿง  Cross-agent knowledge reuse
  • ๐Ÿค– Prompt-to-DSL alignment
  • ๐Ÿ“Š DSL health and usage tracking
  • ๐Ÿ”„ Real-time updates and trace-linked learning

๐Ÿงฉ DSL-Prompt Inference and Semantic Matching


๐ŸŽฏ Why Prompt-DSL Inference Matters

Agents often receive freeform instructions:

"Create a handler that invites a user and emits an event."

To ground this in structured generation, they must:

  • ๐Ÿง  Match this intent to an existing DSL
  • ๐Ÿ“ฆ Inject the correct schema into prompt planning
  • ๐Ÿ“Š Use DSL metadata to constrain, enrich, and validate generation
  • ๐Ÿ” Avoid ambiguity or semantic collisions

Prompt-DSL inference transforms natural language into actionable structured generation.


๐Ÿง  Inference Flow

flowchart TD
  A[Agent Prompt or Task Input] --> B[Embed Prompt Intent]
  B --> C[Query DSL Vector Index]
  C --> D[Filter by Tags + Domain + Tenant]
  D --> E[Select Top-N DSL Candidates]
  E --> F[Prompt Injection Planner]
  F --> G[Selected DSL Injected into Prompt Template]
Hold "Alt" / "Option" to enable pan & zoom

๐Ÿ“˜ Example Prompt โ†’ DSL Flow

Prompt Input:

Create a domain handler for onboarding new users, emit an event when ready.

Matched DSL:

id: dsl-user-handler-v1.2
domain: user-management
type: blueprint
fields:
  - commandName: InviteUserCommand
  - emitsEvent: true
  - eventType: UserOnboarded

Injected into prompt like:

Prompt:
You are generating a domain handler. 
Use this DSL:
{
  commandName: "InviteUserCommand",
  emitsEvent: true,
  eventType: "UserOnboarded"
}

๐Ÿ“ฆ Prompt-to-DSL Matching Criteria

Dimension Strategy
Semantic similarity Vector cosine similarity from embedded prompt
Metadata filters DSL domain/type/tags/layer
Prompt hints requiresDSL, preferTags, tenantContext
Trace reuse Prior successful traces with same intent
DSL confidence Score > min threshold (default 0.7)
Tenant scope Prefer fork if available for tenant

๐Ÿง  DSL-Aware Prompt Templates

Templates are DSL-bound:

promptTemplateId: prompt-domain-handler
requiresDSL:
  domain: user-management
  type: blueprint
  enforceFields:
    - emitsEvent
    - commandName
  preferConfidence: 0.85+

Ensures only high-trust DSLs are injected.


๐Ÿ” Runtime Injection Handling

Case Result
Multiple DSL matches Planner selects highest-score OR requests user clarification
No DSL match found Agent may fallback to open generation (risky) or raise warning
Deprecated DSL matched Planner blocks injection unless override specified
Tenant-specific fork Prefer fork DSL if tenant context matches
Version mismatch DSL updated automatically or planner flags injection version

๐Ÿ“Š DSL Selection Debug Trace (Logged)

promptId: prompt-notify-user
queryVectorMatch:
  - dsl-notify-user-v1.1.0 (0.92)
  - dsl-email-dispatch (0.89)
  - dsl-user-message (0.73)
filters:
  domain: notifications
  status: active
  tenant: shared
selectedDSL: dsl-notify-user-v1.1.0
reason: Highest semantic match + active + confidence > 0.9

๐Ÿง  PromptPlannerAgent Skills Used

Skill Description
FindClosestDSLMatch Vector + metadata + confidence search
EvaluateInjectionCompatibility Validates if DSL fits prompt slots
ExplainInjectionDecision Logs injection rationale
RequestClarificationPrompt Used if multiple DSLs conflict
FallbackToOpenPrompt Used as last resort (guarded)

โœ… Summary

Prompt-to-DSL inference enables:

  • ๐Ÿง  Structured generation from freeform prompts
  • ๐Ÿ” Semantic precision in matching DSLs
  • ๐Ÿ“ฆ Reliable injection of trusted schemas
  • ๐Ÿ” Traceable alignment across planning, code, test, span
  • ๐Ÿค– Autonomous agent behavior grounded in DSL knowledge

๐Ÿงฉ DSL-Aware Prompt Templates and Tokens


๐ŸŽฏ Why Use DSL-Aware Prompt Templates?

Prompt templates act as semantic bridges between agents and generation outputs. When DSLs are injected:

  • ๐Ÿง  Prompts become structured, context-aware, and reproducible
  • ๐Ÿงฉ DSL fields are mapped to placeholders or tokens in the template
  • ๐Ÿ“ฆ Generation is constrained and aligned to architectural contracts
  • ๐Ÿ” Validation and trace replay become deterministic

DSL-aware prompt templates ensure every agent response remains tightly aligned with factory intent.


๐Ÿ“ฆ Prompt Template Metadata

id: prompt-domain-handler
boundDSL:
  domain: user-management
  type: blueprint
requiresFields:
  - commandName
  - emitsEvent
tokens:
  - {{CommandName}}
  - {{EmitsEvent}}
  - {{HandlerLogic}}
outputType: csharp-handler
version: v1.3
confidenceBoost: +0.05

This metadata defines:

  • Which DSLs are allowed
  • Which tokens must be filled
  • Which DSL fields are mapped to which tokens

๐Ÿงฉ Token Mapping

DSL fields are dynamically mapped to tokens:

fieldToTokenMap:
  commandName: "{{CommandName}}"
  emitsEvent: "{{EmitsEvent}}"
  retryPolicy: "{{RetryLogic}}"

Prompt rendering example:

Generate a C# domain handler for {{CommandName}}.
It should emit an event: {{EmitsEvent}}.
Use this retry logic: {{RetryLogic}}.

๐Ÿง  Types of Tokens

Token Type Description
FieldToken Injects value of DSL field
ExampleToken Uses example value or test case
SchemaToken Injects full DSL field schema
SpanToken Injects trace/span hints
FeedbackToken Injects prior user feedback as context
ConstraintToken DSL validation rules or limits

Each token can be static, dynamic, or runtime evaluated.


๐Ÿค– DSL-Aware PromptPlanner Behavior

  1. Selects matching prompt template by DSL type/domain
  2. Maps DSL fields to tokens
  3. Validates all requiresFields are present
  4. Fills tokens in template
  5. Injects structured input into Semantic Kernel planner

๐Ÿ” Prompt Selection Decision Log

selectedPromptTemplate: prompt-notify-handler
boundDSL: dsl-notify-user-v1.1.0
missingTokens: []
confidenceBoost: +0.05
outputType: csharp-command-handler
templateVersion: v1.3

All prompt selection decisions are auditable and linked to trace metadata.


๐Ÿ” Dynamic Prompt Composition (Advanced)

Prompts may also be composed from:

  • DSL metadata (title, description, tags)
  • Prior generation logs
  • Related DSLs via includes or extends

Example:

You are generating a handler using the DSL: {{DSLTitle}}.
Tags: {{Tags}}
Inherited logic: {{ExtendedFieldDescriptions}}

โœ… Summary

DSL-aware prompt templates:

  • Ensure precise alignment between DSLs and generation
  • Use token mapping to expose DSL semantics to LLMs
  • Are validated, versioned, and traceable
  • Support multiple output types (code, test, span, config, docs)
  • Drive reliable and controlled code generation

๐Ÿงช DSL-Driven Code Generation, Test Scaffolding, and Span Injection


๐ŸŽฏ How DSLs Drive Full-Stack Artifact Generation

In the ConnectSoft AI Software Factory, a well-defined DSL can generate:

  • โœ… Source code (e.g., handlers, services, controllers)
  • โœ… Unit and BDD-style tests (e.g., MSTest, SpecFlow)
  • โœ… Observability spans and metrics (OpenTelemetry)
  • โœ… Documentation fragments
  • โœ… Validation rules and UI schemas

DSLs act as semantic generators, encoding not only structure but full intent coverage across factory layers.


๐Ÿ”ง 1. Code Generation from DSL

Example DSL:

id: dsl-user-handler-v1.2
fields:
  commandName: InviteUserCommand
  emitsEvent: true
  eventType: UserInvited

Output handler:

public class InviteUserHandler : ICommandHandler<InviteUserCommand>
{
    public async Task Handle(InviteUserCommand command)
    {
        // business logic here

        _eventBus.Publish(new UserInvitedEvent { UserId = command.UserId });
    }
}

๐Ÿง  Generated using: prompt-domain-handler with dsl-user-handler-v1.2


๐Ÿงช 2. Test Scaffolding via DSL

From the same DSL:

Scenario: Invite user successfully
  Given a valid InviteUserCommand
  When the handler is invoked
  Then a UserInvited event should be published

โžก๏ธ Used by: TestAutomationAgent, SpecFlowPlannerAgent


๐Ÿ” 3. Span Injection and Tracing

DSL span definition:

span:
  name: user.handler.invite
  tags:
    - commandName
    - userId
    - correlationId
  emitOn:
    - success
    - failure

Agent generates:

{
  "span": "user.handler.invite",
  "tags": {
    "commandName": "InviteUserCommand",
    "userId": "1234",
    "correlationId": "abc-xyz"
  },
  "result": "success"
}

โžก๏ธ Injected into observability templates via TelemetrySpanAgent


๐Ÿ“„ 4. Documentation and DSL Snapshots

DSL fields are used to auto-generate:

  • Markdown summary of command handlers
  • Code annotation blocks
  • DSL tables in API documentation
  • Links to examples and traces

Example:

## DSL: Invite User Handler

| Field | Type | Description |
|-------|------|-------------|
| commandName | string | Name of the command |
| emitsEvent | boolean | Whether an event is emitted |
| eventType | string | Name of emitted event |

๐Ÿงฉ 5. Validation from DSL Rules

DSL can include rules:

rules:
  commandName must match pattern: ^[A-Z][a-zA-Z]+Command$
  emitsEvent is required
  eventType is required if emitsEvent is true

โžก๏ธ Injected into validation pipelines and code linting


๐Ÿ” Trace Feedback Loop

When the DSL-generated code runs in production:

  • โœ… Spans confirm successful execution
  • โŒ Broken spans feed into FeedbackAgent
  • ๐Ÿ” DSL confidence is adjusted
  • ๐Ÿ“ฆ Future generations adapt or fork

๐Ÿง  DSL โ†’ Artifact Mapping Summary

DSL Type Output Artifact Agent
blueprint Code, handler, controller CodeGenAgent
span OpenTelemetry config ObservabilityAgent
test SpecFlow, MSTest file TestAutomationAgent
prompt AI input schema PromptPlannerAgent
ui-form Blazor/Angular form UIDesignerAgent
doc Markdown/Swagger notes DocWriterAgent

โœ… Summary

DSLs power end-to-end generation:

  • ๐ŸŽฏ DSL โ†’ Prompt โ†’ Template โ†’ Artifact โ†’ Trace
  • โœ… Test, trace, doc, and code all stem from the same semantic root
  • ๐Ÿ” Feedback loops keep DSLs accurate and evolving
  • ๐Ÿ“Š Confidence and quality are measurable and traceable

โš ๏ธ DSL Conflict Detection and Semantic Collision Resolution


๐ŸŽฏ Why Detect Conflicts?

As the factory scales with:

  • ๐Ÿงฉ Multiple agents contributing DSLs
  • ๐Ÿง  Forks and tenant overrides
  • ๐Ÿ” Inherited templates and prompts
  • ๐Ÿค– Real-time generation across domains

It becomes inevitable that DSLs:

  • โŒ Overlap semantically
  • ๐Ÿงจ Contradict in structure or purpose
  • ๐Ÿงช Interfere during injection or generation

Unresolved DSL collisions degrade generation quality, trace accuracy, and test coverage.


๐Ÿ” Types of Conflicts

Conflict Type Example Severity
๐Ÿชž ID Conflict Two DSLs with same id but different structure High
๐Ÿ“š Field Overlap Two DSLs defining commandName with incompatible types Medium
๐Ÿง  Semantic Collision Two DSLs modeling the same concept with different names Medium
๐Ÿงฉ Injection Ambiguity Multiple DSLs matching the same prompt intent High
๐Ÿ”„ Fork Drift Forked DSL diverging too far from original without change tracking Medium
๐Ÿšง Cross-layer Conflict Frontend DSL and backend DSL generate incompatible types High

๐Ÿ› ๏ธ Conflict Detection Engine

The ConflictResolverAgent detects:

  1. Exact ID collision (same id across tenants)
  2. Overlapping tags + domain + type
  3. Prompt mapping ambiguity (same prompt, multiple DSLs match > 0.9)
  4. Structure similarity with incompatible outputs
  5. Forks with critical field mutation
  6. Span tags overlapping with conflicting observability rules

Logged with:

conflictId: conflict-dsl-user-handler-dup
detectedBy: ConflictResolverAgent
type: id-structure-mismatch
dslIds:
  - dsl-user-handler-v1.2
  - dsl-user-handler-vet-v1.0
impact: high
resolution: manual review required

โš–๏ธ Collision Resolution Strategies

Strategy Description
๐Ÿท๏ธ Rename + Fork Create tenant-specific variant
๐Ÿงฉ Merge Reconcile fields and collapse into one DSL
๐Ÿ›ก๏ธ Suppress Deactivate conflicting DSL temporarily
๐Ÿ” Isolate by Tag Use disjoint tags/domains to separate matching logic
๐Ÿง  Add Prompt Constraint Prevent conflicting injection by refining requiresDSL filters
๐Ÿ” Drift Tracker Alert if fork deviates > N% from base

๐Ÿง  Auto-Triage Rules

conflictPolicies:
  - if: id-conflict
    then: block injection + notify governance
  - if: prompt-injection-ambiguity and confidence < 0.7
    then: deprioritize + log
  - if: fork diverges > 30%
    then: trigger ForkDriftReview

๐Ÿ“Š Conflict Heatmap & Dashboard (Planned)

  • ๐Ÿ”ฅ Show domains with highest collision rate
  • โš–๏ธ Breakdown by DSL type (e.g., blueprint, span)
  • ๐Ÿ”„ Conflict over time chart
  • ๐Ÿ“ Trace failures due to DSL mismatch

๐Ÿค– Agents That Use Conflict Signals

Agent Usage
PromptPlannerAgent Avoids ambiguous DSLs
GovernanceAgent Flags conflicting DSLs for review
ForkTrackerAgent Triggers drift alerts
TraceValidatorAgent Detects runtime DSL mismatches
KnowledgeGraphAgent Annotates graph nodes as conflicting or deprecated

โœ… Summary

Conflict detection:

  • ๐Ÿง  Preserves semantic clarity and generation precision
  • ๐Ÿ” Prevents trace failures and prompt ambiguity
  • ๐Ÿงฉ Enables graceful fork evolution
  • ๐Ÿ“Š Supports governance and review workflows
  • ๐Ÿ› ๏ธ Resolves inconsistencies early in the generation chain

๐Ÿงท DSL-Enabled Governance, Freezing, Deprecation, and Audit Trails


๐ŸŽฏ Why Governance Matters for DSLs

As DSLs encode the semantic contracts of the AI Software Factory, governing their lifecycle ensures:

  • ๐Ÿ›ก๏ธ Security and compliance
  • ๐Ÿ”„ Controlled evolution
  • โŒ Safe deprecation without regressions
  • ๐Ÿ“œ Traceable audit logs for every change
  • โš–๏ธ Multi-tenant integrity and separation

DSL governance is the policy backbone of semantic generation.


๐Ÿ“œ Governance Controls

Control Description
frozen DSL is locked from further edits unless explicitly unfrozen
deprecated Marked for no further use, replaced by successor
requiresApproval Only usable after manual or agent review
tenanted DSL is scoped to a specific tenant, isolated
immutableFields Prevent structural changes to protected fields
reviewChecklist DSL cannot be activated until checklist is complete

๐ŸงŠ Freezing DSLs

status: active
frozen: true
frozenBy: GovernanceAgent
reason: Used in 47 prompt templates and 123 trace runs
  • No updates allowed unless unfrozen
  • Protects critical DSLs in production
  • Can be time-based or usage-based

โšฐ๏ธ Deprecating DSLs

status: deprecated
replacedBy: dsl-user-handler-v2.0
reason: New version aligns with refactored command model

Agents using deprecated DSLs:

  • โš ๏ธ Receive warning
  • ๐Ÿ” Are guided to replacement
  • ๐Ÿ“ฆ PromptPlanner falls back to replacedBy automatically

๐Ÿงพ Audit Trail Structure

Each DSL has a full changelog:

audit:
  createdAt: 2025-04-12
  createdBy: VisionArchitectAgent
  changes:
    - at: 2025-05-01
      by: DSLValidatorAgent
      change: "Added field: retryPolicy"
    - at: 2025-05-08
      by: GovernanceAgent
      change: "Frozen due to production usage"

Stored in DSLChangeLogIndex, queryable by time, field, agent, or status.


๐Ÿ›ก๏ธ Enforcement Agents

Agent Governance Role
GovernanceAgent Freezing, deprecation, approvals
AuditLogAgent Tracks lifecycle and publishes change events
PolicyEngineAgent Evaluates DSL policies per tenant
InjectionGuardAgent Prevents prompt injection of blocked DSLs
ReviewChecklistAgent Enforces completion of human/agent validation before status change

โœ… Governance Policy Example

dslPolicies:
  - type: span
    domain: security
    frozenIf: usedInTrace > 50 AND confidence > 0.9
  - type: blueprint
    requireHumanApproval: true
    immutableFields: [commandName, emitsEvent]
  - tenant: all
    enforceReviewChecklist: true

๐Ÿ”„ Freeze/Unfreeze Triggers

Trigger Result
Used in > 50 successful traces Auto-freeze
Conflict with newer DSL Freeze old one, activate new
Tenant override detected Freeze global, fork DSL
Policy update Apply rules retroactively via audit run

๐Ÿ” Visual Governance Tools (Planned)

  • Status view: draft โ†’ reviewed โ†’ active โ†’ frozen โ†’ deprecated
  • DSL lifecycle timelines
  • Who approved or rejected which DSL
  • DSL family trees with freeze/deprecate annotations
  • Policy violation alerts

โœ… Summary

Governance and audit tracking empower the platform to:

  • ๐Ÿ”’ Lock trusted DSLs in place
  • ๐Ÿงฏ Safely phase out legacy models
  • ๐Ÿ“œ Maintain full audit history
  • ๐Ÿง  Enforce lifecycle and usage policy
  • ๐Ÿ” Enable security, observability, and regulatory compliance

๐ŸŒ DSL Federation Across Projects and Agent Clusters


๐ŸŽฏ Why Federation Is Necessary

ConnectSoftโ€™s AI Software Factory operates across:

  • ๐Ÿ’ผ Multiple customer domains (e.g., HR, Healthcare, eCommerce)
  • ๐Ÿ—๏ธ Multiple projects (microservices, libraries, UIs)
  • ๐Ÿค– Multiple agent clusters (architecture, testing, observability, UX)

To support scalability, DSLs must:

  • Be discoverable, composable, and scoped
  • Allow reuse across agents and templates
  • Enable tenant-specific specialization without duplication
  • Maintain semantic coherence across clusters

DSL federation enables controlled sharing, versioning, and cross-domain interoperability.


๐Ÿงฉ Federation Principles

Principle Description
๐Ÿ“ฆ Shared Core Foundational DSLs (e.g., command-handler, span) live in the shared/core namespace
๐ŸŒฑ Scoped Forks Each project or tenant forks DSLs as needed, preserving lineage
๐Ÿง  Cross-Cluster Compatibility DSLs contain type tags, version metadata for validation across agent clusters
๐Ÿ” Lifecycle Synchronization DSL updates propagate via trace usage and approval events
๐Ÿงญ Knowledge-Aware Routing Agents query DSLs based on scoped federation rules

๐Ÿ—‚๏ธ DSL Namespace Convention

dsl/
  shared/core/blueprints/
  shared/core/spans/
  tenants/vetsoft/blueprints/
  tenants/hrvault/forms/
  domains/ecommerce/prompts/

This structure enables:

  • ๐Ÿ‘๏ธ Clear visibility of DSL ownership and reuse
  • โœ… Traceable governance paths
  • ๐Ÿ“š Multi-layer agent lookup

๐Ÿ“˜ Example: Federated DSL Query

agentContext:
  project: vetsoft-user-service
  tenant: vetsoft
  agentCluster: backend
dslQuery:
  type: blueprint
  domain: user-management
  preferTenantDSL: true
  fallbackToShared: true

โ†’ Searches in order:

  1. tenants/vetsoft/blueprints/
  2. shared/core/blueprints/

๐Ÿง  Agent Federation Capabilities

Agent Federation Behavior
PromptPlannerAgent Searches across federated DSL layers based on context
ForkTrackerAgent Maintains lineage between shared and scoped DSLs
GovernanceAgent Enforces scope-based policies
TraceValidatorAgent Resolves DSL usage by project scope
KnowledgeGraphAgent Links DSLs to their federated variants in graph view

๐Ÿง  DSL Federation Use Cases

Scenario Federation Pattern
Shared login flow shared/core/blueprints/dsl-login-handler
Custom marketing span tenants/commerce360/spans/dsl-campaign-click
Project-specific retry logic domains/infra/blueprints/dsl-retry-policy
Prompt-style adaptation shared/core/prompts/dsl-response-prompt-basic + fork in tenants/eduai/

๐ŸŒ Federation Graph Node Example

dslId: dsl-login-handler-v1.2
scopedCopies:
  - dsl-login-handler-vetsoft-v1.2
  - dsl-login-handler-eduai-v1.1
linkedTemplates:
  - prompt-login-handler
usedInProjects:
  - vetsoft-login-api
  - hrvault-identity
confidenceAcrossScopes:
  shared: 0.92
  vetsoft: 0.88
  eduai: 0.75

โœ… Summary

DSL federation enables:

  • ๐Ÿงฉ Scalable semantic reuse
  • ๐Ÿง  Multi-agent, multi-tenant generation alignment
  • ๐Ÿ” Version-safe propagation
  • ๐Ÿงญ Project + cluster scoped DSL lookups
  • ๐Ÿ“Š Unified governance with scoped enforcement